Contoh Soal Metode Analytical Hierarchy Process (AHP)
KolamTech - Berikut adalah "Contoh Soal Metode Analytical Hierarchy Process (AHP)".
SOAL
Pada bagian marketing di perusahaan yang bergerak di bidang perangkat teknologi ingin ekspansi dan mengembangkan pangsa pasar di berbagai daerah. Adapun perangkat teknologi yang sedang di analisis yaitu Handphone. Ada 3 tipe handphone yang akan di untuk melihat sejauh mana daya serap konsumen selama ini terhadap 3 tipe handphone tersebut. Berikut ini adalah tabel properti dari handphone tersebut. Adapun tipe kita sebut HP1, HP2, HP3 dan HP4.
Tabel 1 : Properti HP Untuk Masing-masing Alternatif
Penyelesaian :
1. Menentukan skala prioritas dari setiap kriteria. Dalam hal ini berdasarkan evaluasi tim marketing: K1(Harga) merupakan prioritas Utama, kemudian K6(Keunikan) dan K5(Berat) merupakan prioritas Kedua serta K2(Memori), K3(Warna) dan K4(Kamera) merupakan prioritas terakhir. Maka masalah di atas dapat di dekomposikan kedalam tangga prioritas seperti gambar di bawah ini:
2. Menghitung Nilai Pairwise Matrix (Matriks Perbandingan Berpasangan) dari setiap kriteria. Berikut ini adalah tabel matriks perbandingan berpasangan dari kriteria diatas yaitu sebagai berikut :
Tabel 2 : Matriks Perbadingan Berpasangan
Berikut ini adalah Normalisasi Matriks Perbandingan di atas :
Tabel 3 : Normalisasi Matriks Perbadingan Berpasangan
Menghitung nilai W berdasarkan tabel normalisasi matriks perbandingan berpasangan yaitu sebagai berikut:
Tabel 4 : Matriks Perbandingan Berpasangan W
Berikut ini adalah matriks perbandingan yaitu sebagai berikut:
Maka berikut ini adalah nilai rata-rata dari matriks perbandingan kriteria yaitu
sebagai berikut:
- K1 = (0,4425+0,3571+ 0,3571+0,3571+0,5000+0,5000)/6 = 0.4188
- K2 = (0,0885+0,0714+0,0714+0,0714 +0,0555+0,0555)/6 = 0.0689
- K3 = (0,0885+0,0714+ 0,0714+0,0714+0,0555+0,0555)/6 = 0.0689
- K4 = (0,0885+0,0714+ 0,0714+0,0714+0,0555+0,0555)/6 = 0.0689
- K5 = (0,1473+0,2143+0,2143+0,2143 +0,1667+0,1667)/6 = 0.1872
- K6 = (0,1473+0,2143+0,2143+0,2143 +0,1667+0,1667)/6 = 0.1872
Maka Nilai Bobot Kriteria (Wj) = (0.4190 ; 0.0690 ; 0.0690 ; 0.0690 ; 0.1873 ; 0.1873)
Untuk n=6, diperoleh RI6 = 1.24 (Lihat Tabel 9.2) sehingga
Maka, berikut ini adalah struktur sementara dari bobot kriteria pada Metode Analythical Hierarchy Process (AHP) yaitu sebagai berikut:
3. Menghitung Nilai Matriks Perbandingan Untuk Setiap Kriteria
Berikut ini adalah transformasi matriks perbandingan berpasangan dari matriks perbandingan berpasangan di atas yaitu
Kemudian menghitung nilai normalisasi matriks perbandingan berpasangan dari data diatas yaitu:
Maka hasil normalisasi dan nilai rata-rata Wj yaitu sebagai berikut:
Maka Nilai Bobot dari masing-masing alternatif yaitu W = {0,167 0,225 0,268 0,341}
- Kriteria Memori (Perhatikan tabel properti alternatif khususnya kriteria memori)
Berikut ini adalah transformasi matriks perbandingan berpasangan dari matriks perbandingan berpasangan di atas yaitu:
Kemudian menghitung nilai normalisasi matriks perbandingan berpasangan dari data di atas yaitu:
Maka hasil normalisasi dan nilai rata-rata Wj yaitu sebagai berikut:
Maka Nilai Bobot dari masing-masing alternatif yaitu W = {0,169 0,203 0,193 0,435}
- Kriteria Warna (Perhatikan tabel properti alternatif khususnya kriteria Warna)
Berikut ini adalah transformasi matriks perbandingan berpasangan dari matriks perbandingan berpasangan di atas yaitu
Kemudian menghitung nilai normalisasi matriks perbandingan berpasangan dari data di atas yaitu:
Maka hasil normalisasi dan nilai rata-rata Wj yaitu sebagai berikut:
Maka Nilai Bobot dari masing-masing alternatif yaitu W = { 0,015 0,015 0,015 0,954}
- Kriteria Kamera (Perhatikan tabel properti alternatif khususnya kriteria kamera)
Berikut ini adalah transformasi matriks perbandingan berpasangan dari matriks perbandingan berpasangan di atas yaitu
Kemudian menghitung nilai normalisasi matriks perbandingan berpasangan dari data di atas yaitu:
Maka hasil normalisasi dan nilai rata-rata Wj yaitu sebagai berikut:
Maka Nilai Bobot dari masing-masing alternatif yaitu W = {0,192 0,308 0,308 0,192}
- Kriteria Berat (Perhatikan tabel properti alternatif khususnya kriteria berat)
Berikut ini adalah transformasi matriks perbandingan berpasangan dari matriks perbandingan berpasangan di atas yaitu:
Kemudian menghitung nilai normalisasi matriks perbandingan berpasangan dari data di atas yaitu:
Maka hasil normalisasi dan nilai rata-rata Wj yaitu sebagai berikut:
Maka Nilai Bobot dari masing-masing alternatif yaitu W = {0,222 0,205 0,236 0,337}
- Kriteria Keunikan (Perhatikan tabel properti alternatif khususnya kriteria keunikan)
Keterangan untuk keunikan adalah:
- HP4 lebih unik di banding HP3
- HP3 lebih unik di banding HP2
- HP2 lebih unik di banding HP1
Maka matriks perbandingan berpasangannya adalah
Berikut ini adalah transformasi matriks perbandingan berpasangan dari matriks perbandingan berpasangan di atas yaitu:
Kemudian menghitung nilai normalisasi matriks perbandingan berpasangan dari data di atas yaitu:
Maka hasil normalisasi dan nilai rata-rata Wj yaitu sebagai berikut:
Maka Nilai Bobot dari masing-masing alternatif yaitu W = {0,057 0,122 0,263 0,558}
4. Menghitung Nilai Perkalian Bobot Kriteria dan Alternatif yang telah selesai di hitung.
Maka berikut ini adalah tabel perangkingannya yaitu sebagai berikut
Tabel 5 - Perangkingan Kasus Metode Analitychal Hierarchy Process
Posting Komentar untuk "Contoh Soal Metode Analytical Hierarchy Process (AHP)"